Conditional Space-time Stability of Collocation Runge–kutta for Parabolic Evolution Equations

نویسندگان

  • R. Andreev
  • J. Schweitzer
  • ROMAN ANDREEV
چکیده

We formulate collocation Runge–Kutta time-stepping schemes applied to linear parabolic evolution equations as space-time Petrov–Galerkin discretizations, and investigate their a priori stability for the parabolic space-time norms, that is the continuity constant of the discrete solution mapping. We focus on collocation based on A-stable Gauss–Legendre and L-stable right-Radau nodes, addressing in particular the implicit midpoint rule and the backward Euler time-stepping schemes. Collocation on Lobatto nodes is analysed as a byproduct. We find through explicit estimates that the continuity constant is controlled in terms of the parabolic CFL number together with a measure of self-duality of the spatial discretization. Numerical observations motivate and illustrate the results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exponential Runge-Kutta methods for parabolic problems

The aim of this paper is to construct exponential Runge-Kutta methods of collocation type and to analyze their convergence properties for linear and semilinear parabolic problems. For the analysis, an abstract Banach space framework of sectorial operators and locally Lipschitz continuous nonlinearities is chosen. This framework includes interesting examples like reaction-diffusion equations. It...

متن کامل

Optimal order a posteriori error estimates for a class of Runge-Kutta and Galerkin methods

We derive a posteriori error estimates, which exhibit optimal global order, for a class of time stepping methods of any order that include Runge–Kutta Collocation (RK-C) methods and the continuous Galerkin (cG) method for linear and nonlinear stiff ODEs and parabolic PDEs. The key ingredients in deriving these bounds are appropriate one-degree higher continuous reconstructions of the approximat...

متن کامل

Implicit Runge-Kutta Methods and Discontinuous Galerkin Discretizations for Linear Maxwell's Equations

In this paper we consider implicit Runge–Kutta methods for the time-integration of linear Maxwell’s equations. We first present error bounds for the abstract Cauchy problem which respect the unboundedness of the differential operators using energy techniques. The error bounds hold for algebraically stable and coercive methods such as Gauß and Radau collocation methods. The results for the abstr...

متن کامل

University of Cambridge Runge{kutta{collocation Methods for Systems of Functional-diierential and Functional Equations Runge{kutta{collocation Methods for Systems of Functional-diierential and Functional Equations

Systems of functional-diierential and functional equations occur in many biological, control and physics problems. They also include functional diierential equations of neutral type as special cases. In this paper we present a numerical method that is based on the continuous extension of the Runge{Kutta method (for ordinary diierential equations) and the collocation method (for functional equat...

متن کامل

Multi-Symplectic Runge-Kutta Collocation Methods for Hamiltonian Wave Equations

A number of conservative PDEs, like various wave equations, allow for a multi-symplectic formulation which can be viewed as a generalization of the symplectic structure of Hamiltonian ODEs. We show that Gauss-Legendre collocation in space and time leads to multi-symplectic integrators, i.e., to numerical methods that preserve a symplectic conservation law similar to the conservation of symplect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013